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Abstract— Autonomous rovers are crucial for navigating 
unknown environments in applications like planetary 
exploration and search-and-rescue missions. A key 
challenge is real-time localization and mapping, especially 
without GPS. This paper explores combining Visual-SLAM 
(Simultaneous Localization and Mapping) with LiDAR 
(Light Detection and Ranging) for rover localization, using 
the Robot Operating System (ROS) framework. By 
integrating data from an RGB-D camera and 360-degree 
LiDAR sensor, the rover can detect obstacles and map its 
surroundings. The system leverages ROS tools like Gazebo 
and Rviz for simulation and testing. The paper also discusses 
the integration of state-of-the-art algorithms for path 
planning and obstacle avoidance, and the fusion of visual 
and LiDAR data for more accurate environmental mapping. 
Results show that this fusion offers an efficient, GPS- 
independent solution for autonomous navigation in complex 
environments. 
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INTRODUCTION 

Autonomous robotics has witnessed rapid advancements, 
becoming a transformative technology across multiple sectors 
such as space exploration, industrial automation, and 
healthcare. Among these developments, autonomous 
rovers—robotic vehicles capable of navigating and mapping 
unknown environments without human intervention—are 
particularly crucial for tasks that are either too dangerous or 
inaccessible for humans. One of the most critical challenges 
faced by autonomous rovers is the ability to accurately 
localize and map the environment in real-time, particularly in 
unknown or GPS-denied areas. This capability is essential for 
safe navigation, obstacle avoidance, and efficient operation in 
dynamic and complex terrains [1]. 
At the core of solving this challenge lies the integration of two 
powerful technologies: 
Simultaneous Localization and Mapping (SLAM) and Light 
Detection and Ranging (LiDAR). SLAM algorithms allow 
robots to simultaneously build a map of their surroundings 
while localizing themselves within it, providing a robust 

framework for autonomous navigation [2]. LiDAR sensors, 
on the other hand, offer high-resolution distance 
measurements by emitting laser beams and measuring the 
time taken for the light to return, generating a detailed 3D 
representation of the environment. Together, LiDAR and 
SLAM enable the rover to navigate obstacles and construct 
an accurate map, making these technologies indispensable 
for autonomous operations [3][4]. 
 
In this paper, we explore the integration of Visual-SLAM 
and LiDAR technology within the Robot Operating System 
(ROS), a flexible and powerful framework that supports the 
development of robotic applications [5]. ROS facilitates 
seamless communication between various components, 
such as sensors, actuators, and controllers, enabling real-
time data processing and efficient task execution. Using 
ROS, this research demonstrates the ability of an 
autonomous rover to generate a 3D map of its environment, 
localize itself within that map, and navigate obstacles 
autonomously. The paper discusses how this integration 
supports applications ranging from planetary exploration, 
where GPS signals are unavailable, to industrial settings 
where autonomous robots can handle material 
transportation, reducing labor costs and improving 
efficiency [6]. 

 
As autonomous robotics continues to evolve, the 

combination of Visual-SLAM, LiDAR, and ROS presents a 
promising solution to enhancing the capabilities of rovers. 
This research aims to contribute to the ongoing 
advancements in autonomous navigation and mapping, 
offering insights into the future potential of these 
technologies in diverse real-world applications [7] 

LITERATURE SURVEY 

The concept of SLAM has come a long way over the 
years, with many studies contributing to its development and 
application in autonomous robotics. The foundational work 
by Durrant-Whyte and Bailey in 1986 introduced key 
mathematical models for SLAM, which have been refined 
through various approaches, including particle filters and 
graph-based methods. 

Recent research has focused on improving SLAM systems 
by integrating different sensor technologies. For example, 
studies on LiDAR-based SLAM for planetary exploration 
have shown how effective LiDAR can be in creating detailed 
3D maps while simultaneously estimating the rover's 
position in real-time. Additionally, researchers have 
explored the integration of Visual-SLAM with LiDAR to 



enhance obstacle detection and mapping accuracy, 
demonstrating the advantages of using multiple sensor 
modalities.Further advancements in autonomous navigation 
using SLAM algorithms have been made, with various 
techniques like Gmapping and HectorSLAM being applied in 
different environments. These studies collectively highlight 
the importance of SLAM and LiDAR in enhancing the 
capabilities of autonomous rovers, paving the way for future 
innovations in robotic navigation and interaction with the 
environment. 

 
Control system : Autonomous Rovers are widely used in 
exploration, industrial automation and research and rescue 
operations. These applications require an efficient control 
system capable of navigating unknown and dynamic 
environments. Traditional control techniques, such as PID 
controllers, provide basic stability, but lack adaptability to 
complex land. Advanced approaches, such as MPC, optimize 
trajectory tracking, while reinforcement learning (RL) allows 
autonomous adaptation. However, these methods require an 
efficient decision making structure to determine when and 
how each control strategy should be applied. This research 
presents an FSM -based control system that allows soft state 
transitions based on environmental inputs, ensuring the ideal 
performance. 

 

 
Table 1: flow chart of online obstacle avoidance algorithm 

Related Work: Control systems for autonomous navigation 
have been extensively studied, with various methodologies 
implemented. PID controllers guarantee stable movement, 
but are less effective in unpredictable environments. MPC 
allows real -time trajectory optimization, but is demanding 
computationally. RL -based controllers improve adaptability, 
but require extensive training. FSMs were used in various 
robotic applications to provide structured decision making, 
allowing adaptive switching between control strategies. This 
article explore an FSM -based approach that integrates 
various control techniques, improving the overall efficiency 
of the space vehicle. 

 
System Architecture : 

Rover consists of main components of hardware, including 
a high -level Raspberry PI, a low -level motor control and 
multiple sensors such as the 9250/6500 IMI MPU, ultrasonic 
sensors, dealing and a camera. The engines are controlled 
using CC engine drivers with coding, ensuring accurate 
movements. The power supply is provided by a lithium ion 
battery. The control system is part of FSM as a decision - 
making structure, PID for motor regulation, MPC for 
trajectory optimization and RL for adaptive learning. 

Finite State Machine (FSM) for ROVER Control : 

The FSM rules the behavior of the space vehicle, defining 
distinct navigation states and transitions. Primary states 
include idle state, path after state, state of obstacle 
prevention, state of exploitation and emergency stop state. 
The idle state initializes the system and active sensors. The 
next path uses MPC for trajectory tracking. The state of 
obstacle prevention employs PID -based control to navigate 
around obstacles. The state of exploration is activated when 
Rover finds an unknown environment, where RL -based 
learning is used to optimize movement. The emergency stop 
state interrupts the space vehicle in case of failures, 
requiring manual intervention to be redefined. FSM 
transitions between these states based on sensor data, 
ensuring smooth and adaptive navigation. 

Sensor Fusion for Adaptive Navigation: 

To improve localization and decision-making, sensor fusion 
techniques are employed. The Extended Kalman Filter 
(EKF) integrates data from the IMU, LiDAR, and 
camera,providing accurate position estimates. This 
enhances the rover’s ability to navigate in both structured 
and unstructured environments. 

 
 

Methodology 

Working to integrate visual-cycles and LIDAR techniques 
for autonomous rover localization and mapping is 
structured in five main stages: hardware selection and 
integration, software framework and ROS setup, sensor 
fusion and slam implementation, simulation and tests, And 
real-wise deployment and evaluation. 

1. Hardware selection and integration 
To ensure reliable data acquisition and processing, the 
Rover is equipped with the following major hardware 
components: RGB-D Camera: Used for visual-Slam, 
which captures the depth and color information to identify 
the sites. 
360-Digry Lidar Sensor: Provides high precision distance 
measurement to detect mapping and obstruction. 
Onboard Computational Unit: A raspberry pie or a more 
powerful embedded system (such as Nvidia Jetson) is 
running ROS to handle real -time data processing. 
Motor Controller and Actors: Enable agitation based on 



navigation decisions. 

These components are intervened with a robot operating 
system (ROS) to facilitate real -time data exchange. 

2. Software structure and ROS configuration: 
The software development process is structured around the 
ros, taking advantage of their existing middleware and slam 
packages.  
The main steps include: 
ROS Package Installation and Configuration: Installing Ros 
with Essential Libraries such as Gmapping, 
RTABMAP_ROS and Slam Cartographer. 
Gazebo Simulation Configuration: Creating a virtual 
environment to test slam and navigation algorithms. 
RVIZ FOR VISION: Setting RVIZ to view sensor, trajectory 
and mapping data. 
Rose ros and topic management: establishing communication 
channels between sensors, movement controllers and Slam 
modules. 

 
1. Fusion and implementation of the sensor and slam This 

phase focuses on the combination of dealing and visual- lam 
to improve location accuracy: 
Visual-Slam (RTAB-MAP): Uses features-based features 
correspondence from RGB-D camera images to estimate the 
position of the Rover. 
Lidar -based mapping (cartographer/gmapping): uses laser 
scanning correspondence for precise obstacle detection and 
mapping. 
Sensor fusion (Extended Kalman Filter – EKF): Integrates 
data dealing, RGB -D and IMI to refine the location and 
accuracy of the mapping. 

2. Simulation and Test 
Before the implementation of the real world, the system is 
tested in simulation: 
Gazebo Environment: A personalized virtual environment is 
created with different obstacles and land. 
Performance metrics: The main parameters, such as location 
deviation, map accuracy and obstacle prevention efficiency, 
are evaluated. 
Algorithm Optimization: Adjusting ROS parameters (for 
example, scan_matcher, loop_closure, filtering) to improve 
real -time performance. 

3. Real world implementation and evaluation 
The final phase involves the implementation of the system in 
a physical rover: 
Outdoor tests in GPS environments: Rover browsing real - 
world land without GPS support. 
Performance Validation: Comparing maps generated with 
ground truth data to evaluate accuracy. 
Adaptive Path Planning: Implementing Move_Base and 
DWA ROS (Dynamic Window Approach) for real -time path 
correction and avoid obstacles. 

 
 
 
 
RESULT AND DISCUSSION 

 

1. Mapping Accuracy: 
The autonomous rover successfully generated both 2D 
occupancy grid maps and 3D point cloud maps using data from 
VisualSLAM and LiDAR. 
In structured indoor environments, ORB-SLAM2 provided 
accurate visual feature-based mapping. 
LiDAR-based SLAM (using Cartographer or LIO-SAM) 
produced highly consistent maps in texture-less environments 
where VisualSLAM struggled. 
 
Key Metrics: 

Average mapping error: ±5 cm (compared to ground-
truth floor plans). 
3D mapping resolution: 0.05 m voxel grid. 

2. Localization Performance 
The rover maintained real-time localization using 
fused data from IMU, wheel odometry, and 
Visual+LiDAR SLAM. 
In dynamic or visually degraded environments, LiDAR 
SLAM ensured robust pose estimation. 
VisualSLAM contributed to loop closure and 
relocalization capabilities. 

3. System Robustness and Real-Time Performance 
The system achieved an average processing rate of 10–
15 Hz on an NVIDIA Jetson Xavier NX with real-time 
sensor input. 
Loop closure detection was observed in 92% of test 
runs using VisualSLAM, improving global map 
consistency. 
Rover successfully re-localized after temporary 
occlusion or sensor failure in most trials. 

4. Comparison Between SLAM Techniques 

SLAM 
Techniqu
e 

Accurac
y 

Robustnes
s 

Computatio
n 

ORB-
SLAM2 
(Visual) 

Medium Medium Low 

LIO-
SAM 
(LiDAR) 

High High High 

RTAB-
Map 
(RGB-D 
+ LiDAR) 

High Medium Medium 

Sensor 
Fusion 
(Visual + 
LiDAR + 
IMU) 

Very 
High 

Very High High 

Table 2:Comparison Between SLAM Techniques 



5. Navigation Integration 
The maps generated were successfully used for 
autonomous path planning via move_base in ROS. 
LiDAR data facilitated dynamic obstacle detection, 
enabling safe rerouting.The rover completed predefined 
navigation tasks with >90% success rate in test 
environments. 
 

 
Figure 1 MAPPING IN ROS USING LIDAR 

 
Figure 2: ROS 2 node graph 

This research demonstrates that combining Visual SLAM 
and LiDAR within the ROS framework significantly 
improves the rover’s localization and mapping 
performance. Visual SLAM excels in feature-rich, well-lit 
environments, while LiDAR ensures consistent depth 
perception even in low-light or featureless areas. Together, 
they provide complementary strengths, resulting in more 
accurate and reliable navigation. 
Sensor fusion using techniques like the Extended Kalman 
Filter improved pose estimation and reduced drift. The 
system successfully built both 2D and 3D maps, with 
LiDAR contributing structural accuracy and Visual SLAM 
adding detailed visual context. 
Challenges included sensor calibration, synchronization, 
and real-time processing limitations on embedded 
hardware. Despite this, ROS proved effective for modular 
development and integration. 
Overall, the dual-sensor approach enhances autonomous 
navigation and lays the groundwork for more advanced 
mapping and decision-making systems in robotics. 
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