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Abstract— Predictive maintenance plays a critical role in
ensuring the reliability and efficiency of electric vehicles [EVs],
particularly in preventing unexpected motor failures. This
paper reviews the application of deep learning techniques,
specifically Convolutional Neural Networks [CNN] and Long
Short-Term Memory [LSTM] networks, for predictive
maintenance in EVs. We analyze sensor data from electric
motors. We look at how these models, combining L1
Regularization, Logistic Regression, and Random Forest,
improve fault detection accuracy. It is preceded by a data
analysis and followed by a discussion on machine learning and
deep learning models used. A comparison of different models is
done and CNN + LSTM emerges as the best possible solution, as
it can capture spatial and temporal patterns in the data. Finally,
we have the challenges and limitations of these models and give
directions for future work including real-time monitoring
systems and digital twin technologies.
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I. INTRODUCTION

The automotive industry is undergoing a rapid
transformation due to advancements in digital
technologies. With the integration of Industry 4.0
principles, there is a significant shift towards
interconnected  systems  that blend traditional
manufacturing with cutting-edge IT infrastructure. These
digital innovations are driving improvements in data
collection, production efficiency, product quality, and cost
optimization. In the realm of vehicle maintenance,
predictive maintenance [PdM] is emerging as a game-
changer, leveraging sensor data and artificial intelligence
[Al] to forecast potential failures, thereby preventing
unplanned downtimes and enhancing operational safety

3].

Industry 4.0, which encompasses key technological
trends such as the Internet of Things [I0T], big data, and
Al, is revolutionizing automotive manufacturing. By
enabling seamless communication between machines and
sensors, this framework fosters real-time data analysis and
decision-making, which is critical in maintaining the
reliability of production processes. Within the automotive
sector, the use of IoT and Al for predictive maintenance has
enhanced the efficiency of vehicle fleets, transforming the
way vehicles are monitored, maintained, and repaired [2,
3].

Predictive maintenance, a core application of Al and
0T in the automotive industry, marks a departure from
traditional reactive and preventive maintenance strategies.
Traditional models, such as reactive maintenance [where
repairs are made after failures occur] or preventive
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maintenance [where routine servicing is conducted at set
intervals], often lead to inefficiencies in cost and time
management [8]. PdM offers a more intelligent solution by
utilizing machine learning algorithms to assess the health
of vehicle components continuously. This allows for early
fault detection, which significantly reduces the likelihood
of unexpected breakdowns and associated costs [9].

The evolution of machine learning techniques has
played a pivotal role in the advancement of predictive
maintenance. Tools such as the Autoregressive Moving
Average [ARMA] model have been widely adopted for
forecasting fault events in industrial settings, offering a
robust foundation for future automotive applications [1].
By integrating these data-driven techniques, manufacturers
can anticipate component failures with greater accuracy,
enabling a proactive approach to vehicle maintenance that
enhances both the reliability and longevity of automotive
systems.

In the automotive sector, real-time data analytics are
becoming the norm, particularly in predictive maintenance.
Vehicles equipped with loT-enabled sensors collect
continuous streams of data, such as temperature, vibration,
and performance metrics, which are then processed using
Al algorithms to predict the remaining useful life [RUL] of
critical parts. This capability allows for optimized
maintenance scheduling, ensuring that repairs are
conducted only when necessary, thus reducing
maintenance costs and extending vehicle life spans [5, 6].

Predictive maintenance is particularly valuable in
electric vehicles [EVs], where the condition of power
electronics, battery systems, and motors must be closely
monitored to prevent malfunctions. Machine learning
techniques, including deep learning algorithms, are
increasingly being used to improve the accuracy of these
predictions. For instance, a study on the integration of Al
into energy management systems for EVs highlights the
potential of Al tools in extending battery life and improving
overall vehicle performance [9, 11]. This integration of Al
into EV maintenance not only enhances vehicle reliability
but also contributes to sustainability efforts by minimizing
energy wastage.

However, the implementation of predictive
maintenance is not without challenges. The complexity of
installing and maintaining loT infrastructure, the need for
significant investments in Al technologies, and the
requirement for skilled personnel to manage these systems
are among the major barriers to its widespread adoption [2,
20]. Despite these obstacles, companies that invest in
predictive maintenance stand to benefit from reduced
operational costs, improved vehicle safety, and longer asset
lifespans.
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Predictive maintenance has been shown to reduce
maintenance costs by up to 12% while increasing
production output by 25% in some sectors [9]. These
significant savings highlight the long-term economic
benefits of PdM, making it an attractive option for
automotive manufacturers looking to stay competitive in
the rapidly evolving industry. Furthermore, predictive
maintenance supports enhanced vehicle safety by
proactively addressing potential failures, reducing the risk
of accidents caused by component malfunctions [16].

In conclusion, predictive maintenance is transforming the
automotive industry by enabling smarter, data-driven
approaches to vehicle maintenance and repair. By
leveraging the power of Al, machine learning, and 10T,
automotive manufacturers can optimize maintenance
schedules, reduce downtime, and improve vehicle
reliability. As the automotive sector continues to evolve,
the adoption of predictive maintenance strategies will
likely become a standard practice, providing both economic
and operational advantages [3, 5].

Il. LITERATURE REVIEW METHODOLOGY

The methodology employed in conducting this literature
review is grounded in a systematic exploration of available
research on predictive maintenance systems, particularly in
the automotive sector. The approach primarily involved
sourcing and synthesizing relevant academic papers, articles,
and case studies from reputable journals, proceedings, and
conference papers that address the intersection of predictive
maintenance, artificial intelligence [Al], machine learning
[ML], and Internet of Things [10T] technologies.

A. ldentification of Relevant Keywords

The first step in this methodology was to identify key
terms related to predictive maintenance in the automotive
industry and associated technologies. The keywords used
included "predictive maintenance," "automotive sector,"
"machine learning,"” "electric vehicles,” "loT," and "artificial
intelligence."” This process ensured that the search
encompassed all aspects of predictive maintenance, focusing
on electric vehicle [EV] systems, power electronics, and
battery management systems [5, 13, 20].

B. Selection of Research Databases

To ensure comprehensive coverage, multiple research
databases were accessed, including IEEE Xplore,
SpringerLink, and Google Scholar. These platforms are
recognized for their extensive collections of peer-reviewed
articles and technical papers. The selection was guided by the
availability of papers relevant to predictive maintenance,
ensuring that the final pool of studies covered both
foundational theoretical frameworks and recent advances in
technology [2, 3, 6].

C. Inclusion and Exclusion Criteria

The selection of papers was based on specific inclusion
and exclusion criteria to maintain the focus on predictive
maintenance in electric vehicles and automotive systems. The
inclusion criteria were as follows:
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e  Papers published from 2017 to 2024, ensuring the
timeliness and relevance of the research [1, 5].

e Studies specifically dealing with predictive
maintenance strategies and their application in the
automotive sector [7, 9].

e Articles that explore the use of Al, ML, and loT
technologies in enhancing the reliability and
performance of EV systems [6, 20].

Papers that primarily focused on predictive maintenance in
other industries [e.g., manufacturing or aerospace] without
direct automotive applications were excluded unless they
offered methodologies adaptable to the automotive context
[8, 9].

D. Review and Classification of Literature

The next step involved reviewing and categorizing the
selected papers based on their specific focus areas. The
literature was divided into three primary categories:

e Predictive Maintenance Approaches: This category
included papers that discuss general frameworks for
predictive maintenance in automotive systems.
Techniques like ARMA modeling, regression
analysis, and statistical methods were reviewed for
their applicability [1, 3].

e Machine Learning and Al Integration: Papers
focusing on the integration of machine learning
algorithms, such as neural networks, decision trees,
and deep learning techniques, into predictive
maintenance systems were reviewed. Special
attention was given to their ability to predict vehicle
component failures and optimize maintenance
schedules [5, 6, 20].

e |loT and Data-Driven Techniques: The third
category included literature on the use of 10T in
predictive maintenance systems. These studies
highlighted the role of real-time data acquisition and
monitoring in predicting potential faults in electric
vehicles [2, 13].

E. Comparative Analysis of Techniques

A comparative analysis was performed to identify the
strengths, limitations, and challenges associated with
different predictive maintenance techniques. Studies like the
one by Baptista and Sankararaman [2021] using ARMA
modeling were compared to machine learning approaches,
such as the neural network models used in more recent works
[1, 6]. This comparison provided insights into the accuracy,
efficiency, and scalability of each method in real-world
automotive applications.

F. Identifying Gaps and Future Research Directions

A significant part of the review involved identifying gaps
in the current literature. While the majority of papers focused
on the technological advancements in predictive
maintenance, few addressed the challenges related to
implementation at scale. For instance, there is a need for more
research into how machine learning models can be optimized
for real-time data analysis without causing delays in vehicle
operation [9, 10]. Furthermore, the integration of l1oT-based



data systems with existing automotive infrastructure poses
both technical and cybersecurity challenges [2, 13].

G. Synthesis of Findings

The findings from this literature review were synthesized
to create a comprehensive understanding of the current state
of predictive maintenance in electric vehicles. The synthesis
involved the integration of theoretical models with practical
case studies, offering a balanced perspective on the
opportunities and challenges in the field. For example,
studies by Hu and Zhou [2021] on the application of machine
learning algorithms in vehicle maintenance were combined
with the work of Ravi et al. [2022] on case studies of
successful predictive maintenance implementations [5, 6].

This template was adapted from those provided by the
IEEE on their own website.

I1. DESCRIPTIVE ANALYSIS OF
THE LITERATURE

In predictive maintenance for electric vehicles, the
dataset primarily comprises sensor data collected from
various vehicle components, such as batteries, motors, and
electronic control units. These sensors continuously monitor
parameters like temperature, voltage, current, and vibrations.
Such datasets can provide valuable insights into the
operational state of the vehicle, allowing for early detection
of potential failures [1, 4, 9]. The richness of this data enables
the application of advanced analytical techniques and
machine learning algorithms to predict maintenance needs
before failures occur.

A. Preprocessing Techniques Employed

Preprocessing is crucial in ensuring the quality and reliability
of the data used for predictive maintenance. This phase
involves several steps:

e Data Cleaning: This step addresses any
inconsistencies in the data, such as duplicate entries,
incorrect values, or irrelevant features. For example,
removing records with sensor malfunctions or
calibrating sensors to correct erroneous readings is
vital [3, 11].

e Feature Extraction: Key features are derived from
the raw sensor data to highlight relevant patterns.
Techniques like Fourier transforms may be applied
to convert time-domain signals into frequency-
domain representations, allowing for the analysis of
vibration data to identify anomalies [6, 7].

e Handling Missing Values: Missing data can
significantly impact model performance. Common
strategies include imputation techniques [e.g.,
mean/mode imputation, interpolation] to fill in gaps,
or remove of instances with excessive missing
values to maintain dataset integrity [2, 12].

e  Outlier Detection: Outliers in sensor data can skew
results. Techniques such as Z-score analysis or the
Tukey method can identify these anomalies,
enabling corrective actions, such as removal or
capping of extreme values [5, 11].
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e Data Transformation: Normalizing or standardizing
features ensures they contribute equally to the
model's performance. This is particularly important
for algorithms sensitive to the scale of input data,
such as deep learning models [4, 10].

B. Deep Learning Models for Predictive Maintenance
1] Convolutional Neural Networks [CNN]

CNNs are adept at processing time-series data due
to their ability to extract spatial hierarchies of features.

Convolutional Neural Networks are a family of deep models
trained mainly on structured grid data, for example, images,
or time series sensor data. CNNs outperform other deep
learning models because their ability to automatically detect
hierarchical features is what is primarily needed in those
domains with huge precedence in recognizing patterns. In the
case of predictive maintenance of an electric vehicle, CNNs
take huge amounts of sensor data into account for detecting
anomalies and predicting failures, thus making EV systems
more reliable and safe.

One of the most fundamental strengths of CNNs is
feature extraction, which does not require much manual
engineering. In the case of EVs, sensors produce high-
dimensional data, encompassing signals from
accelerometers, gyroscopes, and temperature sensors. CNNs
make use of convolution layers to learn spatial hierarchies in
that data. The data can also be preprocessed and filtered to
highlight abnormal signatures in vibration or temperature,
which may be another indicator of component failure soon.

This way, feature extraction is automated, and the
model will focus on the most relevant aspects of the data for
improved prediction accuracy and efficiency. A typical time-
series monitoring data set is typical with CNNs, especially
with EV components. CNNs can easily capture temporal
dependencies and trends by considering time as a spatial
dimension. They can, when used for sensor data, analyze the
vibration signal from an electric motor, say, over time and
identify patterns before failure. This capability enables
manufacturers and fleet operators to pursue predictive
maintenance strategies and reduces the total downtime as
well as the expenses while enhancing overall vehicle
performance.

To enhance its prediction capability, CNNs can be
combined with other deep architectures such as LSTM
networks. This hybrid approach helps the model to rely on
the complementary advantages of both architectures; CNNs
perform very well in spatial feature extraction, whereas
LSTMs work well in sequential dependencies. The use of
these models allows for better performance in predictive
maintenance systems in terms of predicting failures from
historical sensor data with more accuracy. As a result, this
will have effective scheduling and much better uptime in
vehicles.



Numerous studies and industry implementations prove the
success of CNN in predictive maintenance. For example, a
few studies have reflected how CNN can recognize the states
of an electric motor after analyzing the vibrations, thus
providing timely interventions before catastrophic failure.
Recently, automotive companies have used CNN in real-time
health monitoring of a battery and other critical components
of the vehicle to realize proactive decisions on maintenance
and thus enhance the car's lifecycle.
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Fig. 1. CNN Working in Layers

2] Long Short-Term Memory [LSTM]

Long Short-Term Memory [LSTM] networks are a
specialized type of recurrent neural network [RNN] designed
to learn from sequences of data, making them particularly
well-suited for tasks that require modeling temporal
dependencies. In the context of predictive maintenance for
electric vehicles [EVs], LSTMs are invaluable for analyzing
time-series sensor data generated by various vehicle
components. Unlike traditional RNNs, which struggle with
long-term dependencies due to issues like vanishing
gradients, LSTMs incorporate memory cells that enable them
to retain information over extended sequences. This
architecture is crucial when predicting failures or
maintenance needs based on historical data.
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Fig. 2. LSTM Neural Structure & Working

The inherent design of LSTMs allows them to
selectively remember or forget information, making them
exceptionally effective for processing sensor data collected
over time. For instance, in electric vehicles, LSTMs can be
trained on sequences of data such as motor temperature,
battery voltage, and vibration readings. By utilizing a series

- This is an open access Journal

of gates [input, forget, and output gates], LSTMs can
dynamically adjust their memory based on the relevance of
the information being processed. This capability is vital for
applications like early failure prediction, where
understanding patterns and trends from past sensor readings
can significantly influence maintenance decisions.

In the realm of predictive maintenance, LSTMs are
particularly adept at capturing anomalies in sensor data that
may signal impending failures. For example, they can
analyze the historical performance of an electric motor,
detecting shifts in operational parameters that deviate from
the norm. By learning from previous patterns, LSTMs can
identify subtle changes in the data that may indicate potential
issues, allowing for timely interventions before a failure
occurs. This predictive capability not only enhances the
reliability of EVs but also reduces operational costs by
minimizing  unplanned  downtime and  optimizing
maintenance schedules.

The integration of LSTM networks with CNNs
represents a powerful approach for predictive maintenance in
electric vehicles. While CNNs excel at extracting spatial
features from complex data, LSTMs provide the temporal
context necessary for understanding how those features
evolve over time. This hybrid model leverages the strengths
of both architectures, allowing for improved accuracy in
failure prediction. By combining the ability to analyze the
intricate patterns in sensor data with the understanding of
temporal relationships, this approach offers a robust solution
for maintaining the health of electric vehicle systems.

The real-world applicability of LSTMs in predictive
maintenance is further supported by various studies and
industry applications. Research has demonstrated the
effectiveness of LSTMs in predicting battery failures in
electric vehicles by analyzing historical charging patterns and
operational data. These models have shown a high degree of
accuracy in forecasting when a battery might reach critical
levels of degradation, enabling proactive maintenance actions
that extend the life of the battery and enhance overall vehicle
performance.

LSTMs also play a significant role in developing
digital twin technologies, where virtual representations of
physical systems are used to simulate and analyze real-time
performance. By integrating LSTM networks into these
systems, manufacturers can continuously monitor the
condition of electric vehicles, utilizing real-time sensor data
to predict potential failures. This not only improves
maintenance strategies but also enhances the overall user
experience by providing insights into vehicle health and
performance.

In conclusion, LSTMs are an essential component of
predictive maintenance strategies for electric vehicles. Their
ability to model temporal dependencies and analyze time-
series data enables them to predict failures with remarkable
accuracy. As the automotive industry continues to embrace
advanced analytics and machine learning, the role of LSTM
networks will become increasingly critical in enhancing the
reliability and efficiency of electric vehicle systems.

3] Regularization and Accuracy Improvement Techniques



L1 Regularization: L1 regularization, also known as Lasso
regularization, is a strong machine-learning technique to
avoid overfitting in the improvement of the model
performance. In particular, L1 regularization within
predictive maintenance for electric vehicles controls the
complexity of a model and improves the interpretability of
the results. Adding a penalty term proportional to the absolute
value of the coefficients to the loss function makes L1
regularization encourage sparsity in model parameters. This
means that it reduces the number of features used in the
model by driving some of the coefficients to zero, thereby
making the model simpler and easier to interpret.

L1 regularization can thus be quite useful in
applications of predictive maintenance, especially when big
datasets are common and contain many features: finding the
most relevant predictors in sensor data such as temperature,
pressure, and vibration measurements a more compact,
influential feature set and, hopefully, better generalizability
to unseen data. This is especially useful in the EV field, where
determining key failure indicators can be crucial to early
intervention and cost savings in maintenance.

The L1 regularization influence, however, goes
beyond simply adding to the accuracy of a model. In the case
of models applied to predictive maintenance, it actually can
do much greater than that to improve the predictability of a
model because it does not suffer much from the overfitting
pitfalls often found when handling complex, high-
dimensional datasets. For instance, in a predictive model for
predicting time to battery failure from historical charging
patterns with additional usage data, L1 regularization would
prevent the model from becoming one that memorizes the
training data but learn to generalize. The improvement in
predictions is  consequentially = accompanied by
an improvement in maintenance strategy.

It also comes in handy in improving the
interpretability of machine learning models. The prediction
offered by predictive maintenance improves dramatically if
considered that which features are more important or
contribute the most in terms of the predictions so that insight
for the engineers and data scientist is obtained through L1
regularization for the most impactful features, and sensor
readings are prioritized among other related sources of data.
It is extremely helpful in the manufacturing industry like
automotive where actionable insights may become a cost
saver to a very large extent while increasing safety.

Another advantage of L1 is that it often works well
with other techniques, such as cross-validation and feature
scaling. Such integration may further improve effectiveness
when aiming for predictive maintenance scenarios.
Practitioners could combine L1 regularization with other
techniques to fine-tune their model for optimal performance
while keeping it robust against overfitting [6, 10].

41 Other Techniques

To further enhance model accuracy, several techniques can
be applied:

e Dropout: This regularization method randomly sets
a fraction of the input units to zero at each update
during training, which helps prevent overfitting by
ensuring the model does not rely too heavily on any
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one feature [3, 11].

e Batch Normalization: This technique normalizes the
input of each layer, allowing for faster training and
improved stability of the learning process [2, 6]. By
mitigating the problem of internal covariate shift,
batch normalization helps maintain the flow of
gradients throughout the network.

Iv. COMPARATIVE
LEARNING MODELS

MACHINE

A. Logistic Regression

Logistic regression is a statistical model commonly used for
binary classification tasks, such as predicting whether a
vehicle will experience a failure.

1) Pros of CNN Compared to Logistic Regression

e Feature Extraction: CNNs are designed to
automatically extract hierarchical features from
complex data, such as images or time-series sensor
data, without requiring extensive manual feature
engineering. This contrasts with logistic regression,
which relies on predefined features and assumes a
linear relationship between them and the outcome
variable [21].

e Handling Complex Data: CNNs excel at processing
high-dimensional data, particularly spatial and
temporal data, making them well-suited for tasks
such as motor vibration analysis and image
recognition. Logistic regression, on the other hand,
struggles with such complexity and may fail to
capture the intricate patterns necessary for accurate
predictions [14].

o Non-linearity: CNNs utilize non-linear activation
functions [like ReLU] between layers, allowing
them to model complex relationships. Logistic
regression is inherently linear, which can limit its
effectiveness when dealing with non-linear data
distributions often found in real-world applications

[2].

e Scalability: CNNs can scale effectively with larger
datasets, improving their accuracy as more data
becomes available. This is particularly important in
predictive maintenance, where large amounts of
sensor data can be collected over time. Logistic
regression may not perform as well with large
datasets, especially if the relationships among
variables become more intricate [7].

2) Cons of CNN Compared to Logistic Regression

e Complexity and Training Time: CNNs are
significantly more complex than logistic regression,
requiring more computational resources and longer
training times. This complexity may not be justified
for simpler predictive maintenance tasks, where
logistic regression could provide sufficient accuracy



with less overhead [7].

o Interpretability: Logistic regression models are
often easier to interpret, providing clear insights into
the impact of each feature on the predicted outcome.
This interpretability is crucial in industries like
automotive maintenance, where stakeholders need
to understand the reasoning behind predictions.
CNNSs, while powerful, operate more as "black
boxes," making it challenging to interpret their
decision-making processes [7].

e  Overfitting: Although CNNs are powerful, they are
also more prone to overfitting, particularly when
trained on small datasets. Regularization techniques
are necessary to mitigate this risk, adding to the
model's complexity. Logistic regression, being
simpler, is less susceptible to overfitting in cases
with limited data [19]

e Data Requirements: CNNs require large amounts of
labeled data to perform well, especially in
supervised learning tasks. If labeled data is scarce or
costly to obtain, logistic regression may provide a
more practical solution due to its ability to perform
adequately with smaller datasets [15].

B. Random Forest

Random Forest turns out to be very effective in dealing
with large volumes of sensor data from batteries, motors, and
control systems. In a high-dimensional space and often noisy,
it is hard to gain actionable insights that can be used for
predictive maintenance. Random Forest reduces this
complexity by building a hypothesis by aggregating the
predictions coming from multiple trees, thus reducing
variance and improving the overall accuracy of the
prediction.

One of the strengths of Random Forest is that it can rank
features by importance, which might be extremely useful in a
predictive maintenance framework. It will allow engineers to
understand which parameters in the model form the core
identification of soon-to-happen failures based on what they
contribute to the model's predictions. For example, if a
motor's vibration reading remains the strongest predictor of
failure, then maintenance teams know to track that reading
more closely, so interventions can be taken before the failure
will happen. This increases operating efficiency and helps in
proper resource allocation, so efforts are not wasted on areas
where there is no pressing need for maintenance.

Further, its in-built capacity to intelligently handle
missing values and outliers makes Random Forest apt for
typical situations associated with the real-world conditions of
EV operations. In any reality, sensors may fail or send noisy
data due to environmental reasons. Most algorithms that work
on full datasets break down when there are discrepancies.
And what's really interesting about Random Forest is that it
can still predict correctly even in the face of those
discrepancies.

Another area in which Random Forest shines is its ability
to scale and adapt. It can be easily applied to several types of
data, ranging from structured numerical types such as
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temperature and voltage readings to categorical data like
conditions in operation and past maintenance records. This
makes Random Forest an all-purpose tool for predictive
maintenance, which allows different sources of data to be
streamlined into one maintenance model.

It generally outperforms other traditional machine
learning algorithms, such as logistic regression and support
vector machines in multi-class classification, which is the
most common type of classification for predictive
maintenance tasks. Moreover, its ensemble nature allows for
understanding complex interactions between features without
exhaustive hyperparameter tuning, making modeling easier
for data scientists and engineers.

V. DISCUSSION

Considering predictive maintenance for electric
vehicles [EVs], the choice between using Convolutional
Neural Networks [CNNs] and logistic regression is critical
due to the distinct characteristics of the data and the nature of
the problem at hand. CNNs excel at automatically extracting
features from complex datasets, particularly when dealing
with high-dimensional inputs such as images and time-series
sensor data. This capability allows CNNSs to uncover intricate
patterns that traditional models, like logistic regression, may
overlook due to their linear assumptions.

Logistic regression, while simpler and more
interpretable, operates under the assumption of linearity,
making it less effective when relationships between input
features and outcomes are non-linear. This limitation is
particularly pronounced in predictive maintenance scenarios
where sensor data may exhibit complex interdependencies
and non-linear behavior. CNNs can model such complexities,
capturing temporal and spatial features through convolutional
layers, which is essential in understanding behaviors such as
motor vibrations or temperature fluctuations.

Moreover, CNNs are adept at processing larger
datasets, a common scenario in predictive maintenance
applications where extensive sensor data is collected over
time. As the volume of data increases, CNNs typically
improve in accuracy, whereas logistic regression may plateau
in performance due to its simplistic nature [9]. However, this
increase in accuracy comes at the cost of computational
complexity and longer training times, making CNNSs
resource-intensive compared to logistic regression, which is
computationally lightweight and quicker to train.

Interpretability also plays a significant role in model
selection. Logistic regression provides clear coefficients that
indicate the impact of each feature, making it easier for
stakeholders to understand and trust the model's predictions.
In contrast, CNNs often operate as "black boxes," which can
complicate the understanding of how predictions are made,
posing challenges in environments where model transparency
is crucial, such as automotive safety can bring at the same
time are really computationally expensive, especially with
regard to large data and many trees. This can lead to training
times that are longer and also consumption of resources, such
that it might be a concern for very tight budget constraint
organizations or ones requiring real-time predictions.
Moreover, although interpretability of feature importance is



available with the model, its decision process often may be
less clear compared to simpler models, which makes it hard
to communicate findings with non-technical stakeholders

VlI.  CONCLUSION

This review paper has dwelled in detail on the
predictive maintenance techniques on electric vehicles,
particular to CNNs, LSTM networks, logistic regression,
and random forest algorithms. Each one of these displays a
different degree of success as the approaches handle the
complexities of sensor data collected from an EV, such as
motor vibrations, temperature, and torque measurements.
The primary strength in this regard is for CNNs to
automatically extract relevant features from complex high-
dimensional data like cases in time-series and sensor
applications, thereby being complemented by LSTMs
capturing deeper insight into predictive patterns of temporal
dependencies inherent in sequential sensor readings.

Other traditional machine learning
models, such as logistic regression and random forest, are
easy to understand and straightforward to implement but
fail to capture the nonlinear and complex pattern imposed
on this type of data. However, some CNNs and LSTMs can
outperform these models in terms of accuracy and ability to
make better predictions but at a much higher cost of
computation and decreased interpretability. But the
performance-explainability trade-off is a significant
challenge in most practical industrial applications, notably
in the automotive domain, where transparency and model
validation are crucial for regulatory compliance and safety.

While most of the related work above
is innovative, there are significant gaps between what is
currently being developed and what is available for
application in predictive maintenance models of EVs. The
main weakness in deep learning models is their lack of real-
time applicability. Current versions often exhibit high
latency and are not well-suited to handle real-time
streaming data, thereby raising questions about their
applicability in real-world predictive maintenance systems.
Another key gap relates to the problem of unbalanced
datasets. Since failure events of EVs are scarce compared to
normal operating data, the associated models can be
potentially skewed by such an imbalance. So typically, at
least some of the adverse effects thereof would have to be
mitigated by approaches like synthetic data generation,
reinforcement learning, or hybrid modeling.

Further study in this area should
involve the development of 10T technology and 5G
integration network, which promises much in direct real-
time monitoring and predictive maintenance. Research on
digital twins and cloud-based architectures that offer
continuous updates dynamically in models to achieve faster
and more reliable failures detection in EVs is worthy of
pursuit in the future.

In summary, the field, in itself, is still
at its nascent stages; cutting-edge models-CNNs and
LSTMs, in particular-represent the future of predictive
maintenance for EVs. Therefore, it would be expected that
key issues in regions such as real-time performance, model
interpretability, and dataset imbalance are crucially
expected to inform the research for driving these
technologies forward into larger-scale commercial
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applications.
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