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Abstract— Predictive maintenance plays a critical role in 

ensuring the reliability and efficiency of electric vehicles [EVs], 

particularly in preventing unexpected motor failures. This 

paper reviews the application of deep learning techniques, 

specifically Convolutional Neural Networks [CNN] and Long 

Short-Term Memory [LSTM] networks, for predictive 

maintenance in EVs. We analyze sensor data from electric 

motors. We look at how these models, combining L1 

Regularization, Logistic Regression, and Random Forest, 

improve fault detection accuracy. It is preceded by a data 

analysis and followed by a discussion on machine learning and 

deep learning models used. A comparison of different models is 

done and CNN + LSTM emerges as the best possible solution, as 

it can capture spatial and temporal patterns in the data. Finally, 

we have the challenges and limitations of these models and give 

directions for future work including real-time monitoring 

systems and digital twin technologies. 

Keywords—: Predictive maintenance, electric vehicles, deep 

learning, CNN, LSTM, L1 regularization, logistic regression, 
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I. INTRODUCTION 

The automotive industry is undergoing a rapid 

transformation due to advancements in digital 

technologies. With the integration of Industry 4.0 

principles, there is a significant shift towards 

interconnected systems that blend traditional 

manufacturing with cutting-edge IT infrastructure. These 

digital innovations are driving improvements in data 

collection, production efficiency, product quality, and cost 

optimization. In the realm of vehicle maintenance, 

predictive maintenance [PdM] is emerging as a game-

changer, leveraging sensor data and artificial intelligence 

[AI] to forecast potential failures, thereby preventing 

unplanned downtimes and enhancing operational safety 

[3]. 

Industry 4.0, which encompasses key technological 

trends such as the Internet of Things [IoT], big data, and 

AI, is revolutionizing automotive manufacturing. By 

enabling seamless communication between machines and 

sensors, this framework fosters real-time data analysis and 

decision-making, which is critical in maintaining the 

reliability of production processes. Within the automotive 

sector, the use of IoT and AI for predictive maintenance has 

enhanced the efficiency of vehicle fleets, transforming the 

way vehicles are monitored, maintained, and repaired [2, 

3]. 

Predictive maintenance, a core application of AI and 

IoT in the automotive industry, marks a departure from 

traditional reactive and preventive maintenance strategies.    

Traditional models, such as reactive maintenance [where 

repairs are made after failures occur] or preventive 

maintenance [where routine servicing is conducted at set 

intervals], often lead to inefficiencies in cost and time 

management [8]. PdM offers a more intelligent solution by 

utilizing machine learning algorithms to assess the health 

of vehicle components continuously. This allows for early 

fault detection, which significantly reduces the likelihood 

of unexpected breakdowns and associated costs [9]. 

The evolution of machine learning techniques has 

played a pivotal role in the advancement of predictive 

maintenance. Tools such as the Autoregressive Moving 

Average [ARMA] model have been widely adopted for 

forecasting fault events in industrial settings, offering a 

robust foundation for future automotive applications [1]. 

By integrating these data-driven techniques, manufacturers 

can anticipate component failures with greater accuracy, 

enabling a proactive approach to vehicle maintenance that 

enhances both the reliability and longevity of automotive 

systems. 

In the automotive sector, real-time data analytics are 

becoming the norm, particularly in predictive maintenance. 

Vehicles equipped with IoT-enabled sensors collect 

continuous streams of data, such as temperature, vibration, 

and performance metrics, which are then processed using 

AI algorithms to predict the remaining useful life [RUL] of 

critical parts. This capability allows for optimized 

maintenance scheduling, ensuring that repairs are 

conducted only when necessary, thus reducing 

maintenance costs and extending vehicle life spans [5, 6]. 

Predictive maintenance is particularly valuable in 

electric vehicles [EVs], where the condition of power 

electronics, battery systems, and motors must be closely 

monitored to prevent malfunctions. Machine learning 

techniques, including deep learning algorithms, are 

increasingly being used to improve the accuracy of these 

predictions. For instance, a study on the integration of AI 

into energy management systems for EVs highlights the 

potential of AI tools in extending battery life and improving 

overall vehicle performance [9, 11]. This integration of AI 

into EV maintenance not only enhances vehicle reliability 

but also contributes to sustainability efforts by minimizing 

energy wastage. 

However, the implementation of predictive 

maintenance is not without challenges. The complexity of 

installing and maintaining IoT infrastructure, the need for 

significant investments in AI technologies, and the 

requirement for skilled personnel to manage these systems 

are among the major barriers to its widespread adoption [2, 

20]. Despite these obstacles, companies that invest in 

predictive maintenance stand to benefit from reduced 

operational costs, improved vehicle safety, and longer asset 

lifespans. 
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Predictive maintenance has been shown to reduce 

maintenance costs by up to 12% while increasing 

production output by 25% in some sectors [9]. These 

significant savings highlight the long-term economic 

benefits of PdM, making it an attractive option for 

automotive manufacturers looking to stay competitive in 

the rapidly evolving industry. Furthermore, predictive 

maintenance supports enhanced vehicle safety by 

proactively addressing potential failures, reducing the risk 

of accidents caused by component malfunctions [16]. 

In conclusion, predictive maintenance is transforming the 

automotive industry by enabling smarter, data-driven 

approaches to vehicle maintenance and repair. By 

leveraging the power of AI, machine learning, and IoT, 

automotive manufacturers can optimize maintenance 

schedules, reduce downtime, and improve vehicle 

reliability. As the automotive sector continues to evolve, 

the adoption of predictive maintenance strategies will 

likely become a standard practice, providing both economic 

and operational advantages [3, 5]. 

 

II.    LITERATURE REVIEW METHODOLOGY 

The methodology employed in conducting this literature 

review is grounded in a systematic exploration of available 

research on predictive maintenance systems, particularly in 

the automotive sector. The approach primarily involved 

sourcing and synthesizing relevant academic papers, articles, 

and case studies from reputable journals, proceedings, and 

conference papers that address the intersection of predictive 

maintenance, artificial intelligence [AI], machine learning 

[ML], and Internet of Things [IoT] technologies. 

A.  Identification of Relevant Keywords 

The first step in this methodology was to identify key 

terms related to predictive maintenance in the automotive 

industry and associated technologies. The keywords used 

included "predictive maintenance," "automotive sector," 

"machine learning," "electric vehicles," "IoT," and "artificial 

intelligence." This process ensured that the search 

encompassed all aspects of predictive maintenance, focusing 

on electric vehicle [EV] systems, power electronics, and 

battery management systems [5, 13, 20]. 

B.   Selection of Research Databases 

To ensure comprehensive coverage, multiple research 

databases were accessed, including IEEE Xplore, 

SpringerLink, and Google Scholar. These platforms are 

recognized for their extensive collections of peer-reviewed 

articles and technical papers. The selection was guided by the 

availability of papers relevant to predictive maintenance, 

ensuring that the final pool of studies covered both 

foundational theoretical frameworks and recent advances in 

technology [2, 3, 6]. 

C.  Inclusion and Exclusion Criteria 

The selection of papers was based on specific inclusion 

and exclusion criteria to maintain the focus on predictive 

maintenance in electric vehicles and automotive systems. The 

inclusion criteria were as follows: 

• Papers published from 2017 to 2024, ensuring the 

timeliness and relevance of the research [1, 5]. 

• Studies specifically dealing with predictive 

maintenance strategies and their application in the 

automotive sector [7, 9]. 

• Articles that explore the use of AI, ML, and IoT 

technologies in enhancing the reliability and 

performance of EV systems [6, 20]. 

Papers that primarily focused on predictive maintenance in 

other industries [e.g., manufacturing or aerospace] without 

direct automotive applications were excluded unless they 

offered methodologies adaptable to the automotive context 

[8, 9]. 

D.  Review and Classification of Literature 

The next step involved reviewing and categorizing the 

selected papers based on their specific focus areas. The 

literature was divided into three primary categories: 

• Predictive Maintenance Approaches: This category 

included papers that discuss general frameworks for 

predictive maintenance in automotive systems. 

Techniques like ARMA modeling, regression 

analysis, and statistical methods were reviewed for 

their applicability [1, 3]. 

• Machine Learning and AI Integration: Papers 

focusing on the integration of machine learning 

algorithms, such as neural networks, decision trees, 

and deep learning techniques, into predictive 

maintenance systems were reviewed. Special 

attention was given to their ability to predict vehicle 

component failures and optimize maintenance 

schedules [5, 6, 20]. 

• IoT and Data-Driven Techniques: The third 

category included literature on the use of IoT in 

predictive maintenance systems. These studies 

highlighted the role of real-time data acquisition and 

monitoring in predicting potential faults in electric 

vehicles [2, 13]. 

E.  Comparative Analysis of Techniques 

A comparative analysis was performed to identify the 

strengths, limitations, and challenges associated with 

different predictive maintenance techniques. Studies like the 

one by Baptista and Sankararaman [2021] using ARMA 

modeling were compared to machine learning approaches, 

such as the neural network models used in more recent works 

[1, 6]. This comparison provided insights into the accuracy, 

efficiency, and scalability of each method in real-world 

automotive applications. 

F.  Identifying Gaps and Future Research Directions 

A significant part of the review involved identifying gaps 

in the current literature. While the majority of papers focused 

on the technological advancements in predictive 

maintenance, few addressed the challenges related to 

implementation at scale. For instance, there is a need for more 

research into how machine learning models can be optimized 

for real-time data analysis without causing delays in vehicle 

operation [9, 10]. Furthermore, the integration of IoT-based 
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data systems with existing automotive infrastructure poses 

both technical and cybersecurity challenges [2, 13]. 

G.  Synthesis of Findings 

The findings from this literature review were synthesized 

to create a comprehensive understanding of the current state 

of predictive maintenance in electric vehicles. The synthesis 

involved the integration of theoretical models with practical 

case studies, offering a balanced perspective on the 

opportunities and challenges in the field. For example, 

studies by Hu and Zhou [2021] on the application of machine 

learning algorithms in vehicle maintenance were combined 

with the work of Ravi et al. [2022] on case studies of 

successful predictive maintenance implementations [5, 6]. 
This template was adapted from those provided by the 

IEEE on their own website.  

III. DESCRIPTIVE ANALYSIS OF 

THE LITERATURE 

In predictive maintenance for electric vehicles, the 

dataset primarily comprises sensor data collected from 

various vehicle components, such as batteries, motors, and 

electronic control units. These sensors continuously monitor 

parameters like temperature, voltage, current, and vibrations. 

Such datasets can provide valuable insights into the 

operational state of the vehicle, allowing for early detection 

of potential failures [1, 4, 9]. The richness of this data enables 

the application of advanced analytical techniques and 

machine learning algorithms to predict maintenance needs 

before failures occur. 

 

A.  Preprocessing Techniques Employed 

Preprocessing is crucial in ensuring the quality and reliability 

of the data used for predictive maintenance. This phase 

involves several steps: 

• Data Cleaning: This step addresses any 

inconsistencies in the data, such as duplicate entries, 

incorrect values, or irrelevant features. For example, 

removing records with sensor malfunctions or 

calibrating sensors to correct erroneous readings is 

vital [3, 11]. 

• Feature Extraction: Key features are derived from 

the raw sensor data to highlight relevant patterns. 

Techniques like Fourier transforms may be applied 

to convert time-domain signals into frequency-

domain representations, allowing for the analysis of 

vibration data to identify anomalies [6, 7]. 

• Handling Missing Values: Missing data can 

significantly impact model performance. Common 

strategies include imputation techniques [e.g., 

mean/mode imputation, interpolation] to fill in gaps, 

or remove of instances with excessive missing 

values to maintain dataset integrity [2, 12]. 

• Outlier Detection: Outliers in sensor data can skew 

results. Techniques such as Z-score analysis or the 

Tukey method can identify these anomalies, 

enabling corrective actions, such as removal or 

capping of extreme values [5, 11]. 

• Data Transformation: Normalizing or standardizing 

features ensures they contribute equally to the 

model's performance. This is particularly important 

for algorithms sensitive to the scale of input data, 

such as deep learning models [4, 10]. 

 

B.  Deep Learning Models for Predictive Maintenance 

1] Convolutional Neural Networks [CNN] 

CNNs are adept at processing time-series data due 

to their ability to extract spatial hierarchies of features. 

Convolutional Neural Networks are a family of deep models 

trained mainly on structured grid data, for example, images, 

or time series sensor data. CNNs outperform other deep 

learning models because their ability to automatically detect 

hierarchical features is what is primarily needed in those 

domains with huge precedence in recognizing patterns. In the 

case of predictive maintenance of an electric vehicle, CNNs 

take huge amounts of sensor data into account for detecting 

anomalies and predicting failures, thus making EV systems 

more reliable and safe. 

One of the most fundamental strengths of CNNs is 

feature extraction, which does not require much manual 

engineering. In the case of EVs, sensors produce high-

dimensional data, encompassing signals from 

accelerometers, gyroscopes, and temperature sensors. CNNs 

make use of convolution layers to learn spatial hierarchies in 

that data. The data can also be preprocessed and filtered to 

highlight abnormal signatures in vibration or temperature, 

which may be another indicator of component failure soon. 

This way, feature extraction is automated, and the 

model will focus on the most relevant aspects of the data for 

improved prediction accuracy and efficiency. A typical time-

series monitoring data set is typical with CNNs, especially 

with EV components. CNNs can easily capture temporal 

dependencies and trends by considering time as a spatial 

dimension. They can, when used for sensor data, analyze the 

vibration signal from an electric motor, say, over time and 

identify patterns before failure. This capability enables 

manufacturers and fleet operators to pursue predictive 

maintenance strategies and reduces the total downtime as 

well as the expenses while enhancing overall vehicle 

performance. 

To enhance its prediction capability, CNNs can be 

combined with other deep architectures such as LSTM 

networks. This hybrid approach helps the model to rely on 

the complementary advantages of both architectures; CNNs 

perform very well in spatial feature extraction, whereas 

LSTMs work well in sequential dependencies. The use of 

these models allows for better performance in predictive 

maintenance systems in terms of predicting failures from 

historical sensor data with more accuracy. As a result, this 

will have effective scheduling and much better uptime in 

vehicles. 
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Numerous studies and industry implementations prove the 

success of CNN in predictive maintenance. For example, a 

few studies have reflected how CNN can recognize the states 

of an electric motor after analyzing the vibrations, thus 

providing timely interventions before catastrophic failure. 

Recently, automotive companies have used CNN in real-time 

health monitoring of a battery and other critical components 

of the vehicle to realize proactive decisions on maintenance 

and thus enhance the car's lifecycle. 

Fig. 1. CNN Working in Layers 

 

2]  Long Short-Term Memory [LSTM] 

Long Short-Term Memory [LSTM] networks are a 

specialized type of recurrent neural network [RNN] designed 

to learn from sequences of data, making them particularly 

well-suited for tasks that require modeling temporal 

dependencies. In the context of predictive maintenance for 

electric vehicles [EVs], LSTMs are invaluable for analyzing 

time-series sensor data generated by various vehicle 

components. Unlike traditional RNNs, which struggle with 

long-term dependencies due to issues like vanishing 

gradients, LSTMs incorporate memory cells that enable them 

to retain information over extended sequences. This 

architecture is crucial when predicting failures or 

maintenance needs based on historical data. 

 

Fig. 2. LSTM Neural Structure & Working 

The inherent design of LSTMs allows them to 

selectively remember or forget information, making them 

exceptionally effective for processing sensor data collected 

over time. For instance, in electric vehicles, LSTMs can be 

trained on sequences of data such as motor temperature, 

battery voltage, and vibration readings. By utilizing a series 

of gates [input, forget, and output gates], LSTMs can 

dynamically adjust their memory based on the relevance of 

the information being processed. This capability is vital for 

applications like early failure prediction, where 

understanding patterns and trends from past sensor readings 

can significantly influence maintenance decisions. 

In the realm of predictive maintenance, LSTMs are 

particularly adept at capturing anomalies in sensor data that 

may signal impending failures. For example, they can 

analyze the historical performance of an electric motor, 

detecting shifts in operational parameters that deviate from 

the norm. By learning from previous patterns, LSTMs can 

identify subtle changes in the data that may indicate potential 

issues, allowing for timely interventions before a failure 

occurs. This predictive capability not only enhances the 

reliability of EVs but also reduces operational costs by 

minimizing unplanned downtime and optimizing 

maintenance schedules. 

The integration of LSTM networks with CNNs 

represents a powerful approach for predictive maintenance in 

electric vehicles. While CNNs excel at extracting spatial 

features from complex data, LSTMs provide the temporal 

context necessary for understanding how those features 

evolve over time. This hybrid model leverages the strengths 

of both architectures, allowing for improved accuracy in 

failure prediction. By combining the ability to analyze the 

intricate patterns in sensor data with the understanding of 

temporal relationships, this approach offers a robust solution 

for maintaining the health of electric vehicle systems. 

The real-world applicability of LSTMs in predictive 

maintenance is further supported by various studies and 

industry applications. Research has demonstrated the 

effectiveness of LSTMs in predicting battery failures in 

electric vehicles by analyzing historical charging patterns and 

operational data. These models have shown a high degree of 

accuracy in forecasting when a battery might reach critical 

levels of degradation, enabling proactive maintenance actions 

that extend the life of the battery and enhance overall vehicle 

performance. 

LSTMs also play a significant role in developing 

digital twin technologies, where virtual representations of 

physical systems are used to simulate and analyze real-time 

performance. By integrating LSTM networks into these 

systems, manufacturers can continuously monitor the 

condition of electric vehicles, utilizing real-time sensor data 

to predict potential failures. This not only improves 

maintenance strategies but also enhances the overall user 

experience by providing insights into vehicle health and 

performance. 

In conclusion, LSTMs are an essential component of 

predictive maintenance strategies for electric vehicles. Their 

ability to model temporal dependencies and analyze time-

series data enables them to predict failures with remarkable 

accuracy. As the automotive industry continues to embrace 

advanced analytics and machine learning, the role of LSTM 

networks will become increasingly critical in enhancing the 

reliability and efficiency of electric vehicle systems. 

3] Regularization and Accuracy Improvement Techniques 
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L1 Regularization: L1 regularization, also known as Lasso 

regularization, is a strong machine-learning technique to 

avoid overfitting in the improvement of the model 

performance. In particular, L1 regularization within 

predictive maintenance for electric vehicles controls the 

complexity of a model and improves the interpretability of 

the results. Adding a penalty term proportional to the absolute 

value of the coefficients to the loss function makes L1 

regularization encourage sparsity in model parameters. This 

means that it reduces the number of features used in the 

model by driving some of the coefficients to zero, thereby 

making the model simpler and easier to interpret. 

L1 regularization can thus be quite useful in 

applications of predictive maintenance, especially when big 

datasets are common and contain many features: finding the 

most relevant predictors in sensor data such as temperature, 

pressure, and vibration measurements a more compact, 

influential feature set and, hopefully, better generalizability 

to unseen data. This is especially useful in the EV field, where 

determining key failure indicators can be crucial to early 

intervention and cost savings in maintenance. 

The L1 regularization influence, however, goes 

beyond simply adding to the accuracy of a model. In the case 

of models applied to predictive maintenance, it actually can 

do much greater than that to improve the predictability of a 

model because it does not suffer much from the overfitting 

pitfalls often found when handling complex, high-

dimensional datasets. For instance, in a predictive model for 

predicting time to battery failure from historical charging 

patterns with additional usage data, L1 regularization would 

prevent the model from becoming one that memorizes the 

training data but learn to generalize. The improvement in 

predictions is consequentially accompanied by 

an improvement in maintenance strategy. 

It also comes in handy in improving the 

interpretability of machine learning models. The prediction 

offered by predictive maintenance improves dramatically if 

considered that which features are more important or 

contribute the most in terms of the predictions so that insight 

for the engineers and data scientist is obtained through L1 

regularization for the most impactful features, and sensor 

readings are prioritized among other related sources of data. 

It is extremely helpful in the manufacturing industry like 

automotive where actionable insights may become a cost 

saver to a very large extent while increasing safety. 

Another advantage of L1 is that it often works well 

with other techniques, such as cross-validation and feature 

scaling. Such integration may further improve effectiveness 

when aiming for predictive maintenance scenarios. 

Practitioners could combine L1 regularization with other 

techniques to fine-tune their model for optimal performance 

while keeping it robust against overfitting [6, 10]. 

4 ]  Other Techniques 

To further enhance model accuracy, several techniques can 

be applied: 

• Dropout: This regularization method randomly sets 

a fraction of the input units to zero at each update 

during training, which helps prevent overfitting by 

ensuring the model does not rely too heavily on any 

one feature [3, 11]. 

• Batch Normalization: This technique normalizes the 

input of each layer, allowing for faster training and 

improved stability of the learning process [2, 6]. By 

mitigating the problem of internal covariate shift, 

batch normalization helps maintain the flow of 

gradients throughout the network. 

•  

IV. COMPARATIVE MACHINE 

LEARNING MODELS 

 

A. Logistic Regression 

Logistic regression is a statistical model commonly used for 

binary classification tasks, such as predicting whether a 

vehicle will experience a failure. 

 

1) Pros of CNN Compared to Logistic Regression 

• Feature Extraction: CNNs are designed to 

automatically extract hierarchical features from 

complex data, such as images or time-series sensor 

data, without requiring extensive manual feature 

engineering. This contrasts with logistic regression, 

which relies on predefined features and assumes a 

linear relationship between them and the outcome 

variable [21]. 

• Handling Complex Data: CNNs excel at processing 

high-dimensional data, particularly spatial and 

temporal data, making them well-suited for tasks 

such as motor vibration analysis and image 

recognition. Logistic regression, on the other hand, 

struggles with such complexity and may fail to 

capture the intricate patterns necessary for accurate 

predictions [14]. 

• Non-linearity: CNNs utilize non-linear activation 

functions [like ReLU] between layers, allowing 

them to model complex relationships. Logistic 

regression is inherently linear, which can limit its 

effectiveness when dealing with non-linear data 

distributions often found in real-world applications 

[2]. 

• Scalability: CNNs can scale effectively with larger 

datasets, improving their accuracy as more data 

becomes available. This is particularly important in 

predictive maintenance, where large amounts of 

sensor data can be collected over time. Logistic 

regression may not perform as well with large 

datasets, especially if the relationships among 

variables become more intricate [7]. 

 

2) Cons of CNN Compared to Logistic Regression 

• Complexity and Training Time: CNNs are 

significantly more complex than logistic regression, 

requiring more computational resources and longer 

training times. This complexity may not be justified 

for simpler predictive maintenance tasks, where 

logistic regression could provide sufficient accuracy 
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with less overhead [7]. 

• Interpretability: Logistic regression models are 

often easier to interpret, providing clear insights into 

the impact of each feature on the predicted outcome. 

This interpretability is crucial in industries like 

automotive maintenance, where stakeholders need 

to understand the reasoning behind predictions. 

CNNs, while powerful, operate more as "black 

boxes," making it challenging to interpret their 

decision-making processes [7]. 

• Overfitting: Although CNNs are powerful, they are 

also more prone to overfitting, particularly when 

trained on small datasets. Regularization techniques 

are necessary to mitigate this risk, adding to the 

model's complexity. Logistic regression, being 

simpler, is less susceptible to overfitting in cases 

with limited data [19] 

• Data Requirements: CNNs require large amounts of 

labeled data to perform well, especially in 

supervised learning tasks. If labeled data is scarce or 

costly to obtain, logistic regression may provide a 

more practical solution due to its ability to perform 

adequately with smaller datasets [15]. 

 

B.  Random Forest 

Random Forest turns out to be very effective in dealing 

with large volumes of sensor data from batteries, motors, and 

control systems. In a high-dimensional space and often noisy, 

it is hard to gain actionable insights that can be used for 

predictive maintenance. Random Forest reduces this 

complexity by building a hypothesis by aggregating the 

predictions coming from multiple trees, thus reducing 

variance and improving the overall accuracy of the 

prediction. 

One of the strengths of Random Forest is that it can rank 

features by importance, which might be extremely useful in a 

predictive maintenance framework. It will allow engineers to 

understand which parameters in the model form the core 

identification of soon-to-happen failures based on what they 

contribute to the model's predictions. For example, if a 

motor's vibration reading remains the strongest predictor of 

failure, then maintenance teams know to track that reading 

more closely, so interventions can be taken before the failure 

will happen. This increases operating efficiency and helps in 

proper resource allocation, so efforts are not wasted on areas 

where there is no pressing need for maintenance. 

Further, its in-built capacity to intelligently handle 

missing values and outliers makes Random Forest apt for 

typical situations associated with the real-world conditions of 

EV operations. In any reality, sensors may fail or send noisy 

data due to environmental reasons. Most algorithms that work 

on full datasets break down when there are discrepancies. 

And what's really interesting about Random Forest is that it 

can still predict correctly even in the face of those 

discrepancies.  

Another area in which Random Forest shines is its ability 

to scale and adapt. It can be easily applied to several types of 

data, ranging from structured numerical types such as 

temperature and voltage readings to categorical data like 

conditions in operation and past maintenance records. This 

makes Random Forest an all-purpose tool for predictive 

maintenance, which allows different sources of data to be 

streamlined into one maintenance model. 

It generally outperforms other traditional machine 

learning algorithms, such as logistic regression and support 

vector machines in multi-class classification, which is the 

most common type of classification for predictive 

maintenance tasks. Moreover, its ensemble nature allows for 

understanding complex interactions between features without 

exhaustive hyperparameter tuning, making modeling easier 

for data scientists and engineers. 

 

V. DISCUSSION 

Considering predictive maintenance for electric 

vehicles [EVs], the choice between using Convolutional 

Neural Networks [CNNs] and logistic regression is critical 

due to the distinct characteristics of the data and the nature of 

the problem at hand. CNNs excel at automatically extracting 

features from complex datasets, particularly when dealing 

with high-dimensional inputs such as images and time-series 

sensor data. This capability allows CNNs to uncover intricate 

patterns that traditional models, like logistic regression, may 

overlook due to their linear assumptions. 

Logistic regression, while simpler and more 

interpretable, operates under the assumption of linearity, 

making it less effective when relationships between input 

features and outcomes are non-linear. This limitation is 

particularly pronounced in predictive maintenance scenarios 

where sensor data may exhibit complex interdependencies 

and non-linear behavior. CNNs can model such complexities, 

capturing temporal and spatial features through convolutional 

layers, which is essential in understanding behaviors such as 

motor vibrations or temperature fluctuations. 

Moreover, CNNs are adept at processing larger 

datasets, a common scenario in predictive maintenance 

applications where extensive sensor data is collected over 

time. As the volume of data increases, CNNs typically 

improve in accuracy, whereas logistic regression may plateau 

in performance due to its simplistic nature [9]. However, this 

increase in accuracy comes at the cost of computational 

complexity and longer training times, making CNNs 

resource-intensive compared to logistic regression, which is 

computationally lightweight and quicker to train. 

Interpretability also plays a significant role in model 

selection. Logistic regression provides clear coefficients that 

indicate the impact of each feature, making it easier for 

stakeholders to understand and trust the model's predictions. 

In contrast, CNNs often operate as "black boxes," which can 

complicate the understanding of how predictions are made, 

posing challenges in environments where model transparency 

is crucial, such as automotive safety can bring at the same 

time are really computationally expensive, especially with 

regard to large data and many trees. This can lead to training 

times that are longer and also consumption of resources, such 

that it might be a concern for very tight budget constraint 

organizations or ones requiring real-time predictions. 

Moreover, although interpretability of feature importance is 
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available with the model, its decision process often may be 

less clear compared to simpler models, which makes it hard 

to communicate findings with non-technical stakeholders 

VI. CONCLUSION 

This review paper has dwelled in detail on the 

predictive maintenance techniques on electric vehicles, 

particular to CNNs, LSTM networks, logistic regression, 

and random forest algorithms. Each one of these displays a 

different degree of success as the approaches handle the 

complexities of sensor data collected from an EV, such as 

motor vibrations, temperature, and torque measurements. 

The primary strength in this regard is for CNNs to 

automatically extract relevant features from complex high-

dimensional data like cases in time-series and sensor 

applications, thereby being complemented by LSTMs 

capturing deeper insight into predictive patterns of temporal 

dependencies inherent in sequential sensor readings. 

 Other traditional machine learning 

models, such as logistic regression and random forest, are 

easy to understand and straightforward to implement but 

fail to capture the nonlinear and complex pattern imposed 

on this type of data. However, some CNNs and LSTMs can 

outperform these models in terms of accuracy and ability to 

make better predictions but at a much higher cost of 

computation and decreased interpretability. But the 

performance-explainability trade-off is a significant 

challenge in most practical industrial applications, notably 

in the automotive domain, where transparency and model 

validation are crucial for regulatory compliance and safety. 

 While most of the related work above 

is innovative, there are significant gaps between what is 

currently being developed and what is available for 

application in predictive maintenance models of EVs. The 

main weakness in deep learning models is their lack of real-

time applicability. Current versions often exhibit high 

latency and are not well-suited to handle real-time 

streaming data, thereby raising questions about their 

applicability in real-world predictive maintenance systems. 

Another key gap relates to the problem of unbalanced 

datasets. Since failure events of EVs are scarce compared to 

normal operating data, the associated models can be 

potentially skewed by such an imbalance. So typically, at 

least some of the adverse effects thereof would have to be 

mitigated by approaches like synthetic data generation, 

reinforcement learning, or hybrid modeling. 

 Further study in this area should 

involve the development of IoT technology and 5G 

integration network, which promises much in direct real-

time monitoring and predictive maintenance. Research on 

digital twins and cloud-based architectures that offer 

continuous updates dynamically in models to achieve faster 

and more reliable failures detection in EVs is worthy of 

pursuit in the future. 

 In summary, the field, in itself, is still 

at its nascent stages; cutting-edge models-CNNs and 

LSTMs, in particular-represent the future of predictive 

maintenance for EVs. Therefore, it would be expected that 

key issues in regions such as real-time performance, model 

interpretability, and dataset imbalance are crucially 

expected to inform the research for driving these 

technologies forward into larger-scale commercial 

applications. 
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